PolarizedBRF.jl
PolarizedBRF.jl is a Julia package for calculating polarized bidrectional reflectance factors. It is largely based on M. Mishchenko et al.'s code.
PolarizedBRF.F_from_expansion
PolarizedBRF.Wrapper.dd
PolarizedBRF.Wrapper.run_pbrf
PolarizedBRF.evaluate
PolarizedBRF.expand
PolarizedBRF.get_itp
PolarizedBRF.ssf
PolarizedBRF.ssf_correction
PolarizedBRF.ssf_hunter
PolarizedBRF.ssf_sticky
PolarizedBRF.F_from_expansion
— MethodCalculate scattering matrix for given angles using the expansion coefficients.
F_from_expansion(coeff, θ; output_dataframe, data)
coeff
: Expansion coefficients, which is anlmax1 x 6
matrix.θ
: The angles in ascending order at which the scattering matrix is calculated.
Optional parameters:
output_dataframe
: Whether or not to output the scattering matrix in theDataFrame
format. Default isfalse
, and anNθ x 6
matrix will be outputed.data
: Use precalculated Wigner d data. By default new data will be calculated.
PolarizedBRF.evaluate
— MethodEvaluate the refletion matrix $\mathbf{R}(\mu,\phi;\mu_0,\phi_0)$ using built interpolations.
evaluate(itps, μ, ϕ, μ₀, ϕ₀)
PolarizedBRF.expand
— MethodExpand given scattering matrix (6-independent columns: a1, a2, a3, a4, b1, b2) to General Spherical Function (GSF) coefficients.
expand(
F,
θ₀;
smax,
smin,
ngauss,
double_threshold,
adding_step,
stop_threshold,
cutoff,
interpolation_strategy,
ε,
θₑ,
error_type,
_kwargs...
)
F
: The scattering matrix columns, which should be anNθ x 6
matrix.θ₀
: The scattering angles. If the maximum value is larger thanπ
, then the angles are assumed to be in degrees, otherwise the angles are assumed to be in radians.
Optional parameters:
smax
: Highest level for expansion. Default is-1
, and in such case, the highest level is determined via trial-and-error until the desired precision (defined byε
anderror_type
) is reached.smin
: The start point of iteration. Default is30
.ngauss
: The function for determine the number of Gaussian quadrature points. It takes the current expansion level plus 1,s + 1
, as the input. Default isidentity
.double_threshold
: The highest level before whichs
is doubled each time. Default is5000
.adding_step
: The step size in the adding phase. Default is100
.stop_threshold
: The highest permitted expansion level. Default is20000
.interpolation_strategy
: The interpolation strategy. Default isPolarizedBRF.Linear
, which usesLinearInterpolation
fromInterpolations.jl
. Optional isPolarizedBRF.Spline
, which usesSpline1D
fromDierckx.jl
.cutoff
: Cut off the expansion coefficients when the absolute value ofα₁
at this level is smaller thancutoff
. Default is0.0
, meaning no cutoff will be applied. Note that Ito et al. (2018) usedcutoff = 1e-8
.ε
: The desired error bound. Default is0.02
.θₑ
: The angles used for error checking. Default isθ₀
.error_type
: The error type. Default isPolarizedBRF.AbsoluteError
, other options includePolarizedBRF.RelativeError
andPolarizedBRF.RootMeanSquaredError
.
PolarizedBRF.get_itp
— MethodBuild interpolations from the calculated Fourier coefficients.
get_itp(x, R)
PolarizedBRF.ssf
— MethodCalculate the static structure factor.
ssf(f, r, θ)
f
: Volume fraction.r
: Volumetrically equivalent radius.θ
: Scattering angle in radians.
PolarizedBRF.ssf_correction
— MethodApply the static structure factor correction to the given expansion coeffcients.
ssf_correction(
coeff,
Cext,
Csca;
volume_fraction,
r,
τ,
Nθ,
Nm,
equidistant,
output_dataframe,
strategy,
kwargs...
)
coeff
: The original expansion coeffcients, an(lmax + 1) x 6
matrix.Cext
: Extinction cross section.Csca
: Scattering cross section.
Optional parameters:
volume_fraction
: The volume fraction taken by the scatterers. Default is0.2
.r
: The volumetrically equivalent/effective radius of the scatterer.τ
: The stickiness factor. Default is0
, meaning stickiness is not considered. The valid range isτ ≥ (2 - √2) / 6
.Nθ
: Number of angles required for the output scattering matrix. Default is181
.Nm
: Number of angles used for the intermediate step. Default is2lmax
.equidistant
: Whether or not the output angles should be equidistant. Default istrue
. When set tofalse
, Gaussian quadrature nodes (for cosθ) will be used instead.output_dataframe
: Whether or not to output the scattering matrix in theDataFrame
format. Default isfalse
, and anNθ x 6
matrix will be outputed.strategy
: Special strategy for expansion. Default isPolarizedBRF.StandardExpansion
, and the expansion can be controlled via the keyword arguments specified forexpand()
. If usePolarizedBRF.Ito18
, then the strategy used in Ito et al. (2018) will be used instead, in which the highest expansion level is set to4 * lmax
and the expansion coefficients are cut off at the threshold1e-8
.- All keyword arguments for
expand()
also apply here.
PolarizedBRF.ssf_hunter
— MethodCalculate the static structure factor using Hunter (2001)'s formula, which is almost equivalent to ssf()
, but does not treat $|4r\sin\frac{\theta}{2}|<0.01$ cases specially.
ssf_hunter(f, r, θ)
f
: Volume fraction.r
: Volumetrically equivalent radius.θ
: Scattering angle in radians.
PolarizedBRF.ssf_sticky
— MethodCalculate SSF for sticky particles.
ssf_sticky(f, r, θ, τ)
See Eqs. (8.4.20–22) in:
Tsang, L., Kong, J.A., Ding, K.-H., Ao, C.O., 2001. Scattering of Electromagnetic Waves: Numerical Simulations. John Wiley & Sons, Inc., New York, USA. https://doi.org/10.1002/0471224308
f
: Volume fraction.r
: Volumetrically equivalent radius.θ
: Scattering angle in radians.τ
: Stickiness parameter.
PolarizedBRF.Wrapper.dd
— MethodCalculate $d_{m0}^s(x)$, $d_{m,-2}^s(x)$ and $d_{m,2}^s(x)$ for $s\in[0,l_{\max}]$.
dd(x, lmax, m)
PolarizedBRF.Wrapper.run_pbrf
— MethodCalculate the Fourier coefficients of the refletion matrix using PolarizedBRF.
run_pbrf(ω, ngauss, coeff; ε, x, w, mode)
ω
is the single scattering albedo, which should be within(0, 1]
.ngauss
determines the number of points used in integration.coeff
is the expansion coefficients, which should be anR x 6
matrix.
Optional parameters:
ε
is the threshold for convergence check. Detault is1e-7
.mode
determines the way to do the quadrature. Default isPolarizedBRF.StandardQuadrature
(NQUADR=2
in the original code), which is a normal Gaussian-Legendre quadrature within[0, 1]
. Other options arePolarizedBRF.NormalOrientedQuadrature
(NQUADR=1
in the original code),PolarizedBRF.ExplicitNormalQuadrature
(NQUADR=3
in the original code) andPolarizedBRF.CustomQuadrature
. Note that:PolarizedBRF.StandardQuadrature
might not be suitable if the refletion in the normal direction is needed.- For
PolarizedBRF.CustomQuadrature
, you need to input suitable nodesx
and weightsw
yourself.
x
is the custom quadrature nodes within[0, 1]
. Only used whenmode
isPolarizedBRF.CustomQuadrature
.w
is the corresponding quadrature weights. Only used whenmode
isPolarizedBRF.CustomQuadrature
.
Results:
R
is a4 x 4 x NG x NG x LMAX1
array, storing all the Fourier coefficients.x
is the quadrature nodes.w
is the quadrature weights.