MieScattering
Documentation for MieScattering.
MieScattering.bhcoat
— Methodbhcoat([T=Float64,], x_core, x_mantle, m_core, m_mantle; Nθ = 181, tolerance = 1e-8)
Inputs:
T
: Type used for calculation. All real numbers will be stored asT
, while all complex numbers will be stored asComplex{T}
.x_core
: Size parameter of the core. Defined as $\frac{2\pi r}{\lambda}$x_mantle
: Size parameter of the coated sphere.x_mantle >= x_core
should hold.m_core
: Refractive index of the core, relative to the host medium.m_mantle
: Refractive index of the mantle, relative to the host medium.
Keyword arguments:
Nθ
: Number of scattering angles to calculate. Default is181
.tolerance
: Error tolerance. Default is1e-8
.
Scattering information is outputed as a named tuple, including the following fields:
q_ext
: Extinction efficiency. Defined as $C_{\mathrm{ext}}/\pi r^2$, where $C_{\mathrm{ext}}$ is the extinction cross section.q_sca
: Scattering efficiency.q_abs
: Absorption efficiency.q_back
: Backscattering efficiency. Defined as $4(\mathrm{d}C_\mathrm{ext}/\mathrm{d}\Omega)/r^2$.asymm
: Asymmetry factor $\langle\cos(\theta)\rangle$.S
= (S₁
,S₂
): Amplitude scattering matrix components. See Eq. (3.12) in Bohren and Huffman (1983). Both S₁ and S₂ are vectors containingNθ
values.F
= (F₁₁
,F₁₂
,F₃₃
,F₃₄
): Mueller scattering matrix components. See Eq. (3.16) in Bohren and Huffman (1983). All Fᵢⱼ are vectors containingNθ
values.
References:
- Bohren, C.F., Huffman, D.R., 1983. Absorption and scattering of light by small particles. John Wiley & Sons.
MieScattering.bhmie
— Methodbhmie([T=Float64,], x, m; Nθ=181, nextra=15, custom_nstop=0)
Inputs:
T
: Type used for calculation. All real numbers will be stored asT
, while all complex numbers will be stored asComplex{T}
.x
: Size parameter of the sphere scatterer. Defined as $\frac{2\pi r}{\lambda}$m
: Relative refractive index of the scatterer.
Keyword arguments:
Nθ
: Number of scattering angles to calculate. Default is181
.nextra
: Extra terms used for the downward calculation of thed
function. Default is15
.custom_nstop
: Custom truncation point. Default is0
, and the empirical formula
\[n_{\mathrm{stop}}=\max(x+4\sqrt[3]{x}+2, |m|x)\]
will be used.
Scattering information is outputed as a named tuple, including the following fields:
q_ext
: Extinction efficiency. Defined as $C_{\mathrm{ext}}/\pi r^2$, where $C_{\mathrm{ext}}$ is the extinction cross section.q_sca
: Scattering efficiency.q_abs
: Absorption efficiency.q_back
: Backscattering efficiency. Defined as $4(\mathrm{d}C_\mathrm{ext}/\mathrm{d}\Omega)/r^2$.asymm
: Asymmetry factor $\langle\cos(\theta)\rangle$.S
= (S₁
,S₂
): Amplitude scattering matrix components. See Eq. (3.12) in Bohren and Huffman (1983). Both S₁ and S₂ are vectors containingNθ
values.F
= (F₁₁
,F₁₂
,F₃₃
,F₃₄
): Mueller scattering matrix components. See Eq. (3.16) in Bohren and Huffman (1983). All Fᵢⱼ are vectors containingNθ
values.
References:
- Bohren, C.F., Huffman, D.R., 1983. Absorption and scattering of light by small particles. John Wiley & Sons.